Innovative Programs to End the HIV Epidemic: ART Rapid Start

Jonathan Colasanti, MD MSPH @jcolasantiMD

Southeast AIDS Education & Training Center (SEATEC) Webinar January 22, 2020

Disclosures

- (CME) Integritas Communications: Funded through Gilead
- (CME) Vindico CME Funded through ViiV Healthcare

Objectives

- Describe the Data Pertaining to Rapid ART Start with focus on programs in Southeast
- 2. Advocate for Rapid Start Approach in Context of Equity
- 3. Review clinical considerations when initiating rapid ART
- 4. Identify Potential Hurdles to Implementation

Ending the HIV Epidemic

GOAL

75% reduction

in new HIV infections in 5 years and at least

90%

reduction in 10 years

Diagnose all people with HIV as early as possible after infection.

Treat the infection RAPIDLY and effectively to achieve sustained viral suppression.

Protect people at risk for HIV using potent and proven prevention interventions, including PrEP, a medication that can prevent HIV infections.

Respond rapidly to detect and respond to growing HIV clusters and prevent new HIV infections.

HIV HealthForce will establish local teams committed to the success of the Initiative in each jurisdiction.

Ending the HIV Epidemic: A Plan for America

Regional Breakdown of the 48 Highest Burden Target Counties

Ending the HIV Epidemic: A Plan for America

48 Highest Burden Counties and D.C.

In 67% of the 48 target counties and D.C., the percent of people living in poverty is higher than the national average (14.7%)

LIVING IN POVERTY, 2015

0-12.0 12.1-15.0 15.1-18.0 18.1+ In 73% of the 48 target counties and D.C., the percent of people uninsured is higher than the national average (9.4%)

PERCENT OF POPULATION **LACKING HEALTH INSURANCE, 2015**

0-12.0 12.1-16.0 16.1 - 20.0

Structural Racism

Slavery Expansion

The U.S. Coast Survey map calculated the number of slaves in each county in the United States in 1860. (Library of Congress)

Failing to Remember

#RobertRayford

Article

October 14, 1988

Documentation of an AIDS Virus Infection in the United States in 1968

Robert F. Garry, PhD; Marlys H. Witte, MD; A. Arthur Gottlieb, MD; et al

Author Affiliations

JAMA. 1988;260(14):2085-2087. doi:10.1001/jama.1988.03410140097031

https://www.smithsonianmag.com/history/maps-reveal-slavery-expanded-across-united-states-180951452/

Guidelines Endorse

DHHS^[1]

 ART to be started immediately or as soon as possible after diagnosis (AII)

WHO^[2]

Recommended where feasible same day

IAS-USA^[3]

 Start ART as soon as possible, including immediately after diagnosis, if patient is ready

NY State DOH^[4]

 Offer rapid initiation of antiretroviral therapy (ART) preferably on the same day (A1) or within 96 hours of diagnosis

UNDETECTABLE

A PERSON LIVING WITH HIV
WHO HAS AN UNDETECTABLE
VIRAL LOAD DOES NOT
TRANSMIT THE VIRUS TO THEIR
PARTNERS.

The International AIDS Society is proud to endorse the U=U consensus statement of the Prevention Access Campaign.

Lifetime Risk of HIV Infection...

Interpret Outcomes in Context of Setting

RCTs: Global Setting

SFGH RAPID Model

ART Start HIV+ Diagnosis 1st Clinic Visit 1st PCP Visit **Viral Load Suppressed** Disclosure Pills taken Registered Medical evaluation VL monitoring Referral Insured ART criteria met Adherence Housing/SU/MH Scheduling Retention Counseling • Labs **RAPID Visit and ART Start** Disclosure, counseling, registration **PCP** visits Insurance VL monitoring Housing/SU/MH ART management Labs Adherence Counseling Retention Medical eval

SFGH: RAPID – Uptake of Same day ART

Key Sociodemographics

	RAPID n=39	Universal n=47
Homelessness	11 (28%)	13 (25%)
Uninsured	39 (100%)	47 (100%)
Illicit Substance Use	18 (46%)	18 (38%)

RAPID: Quick and Durable Viral Suppression 2013 – 2017 SF DPH

Grady Infectious Disease Program: The Ponce de Leon Center

Who do we serve?

- 71% Male, 28% Female, <1% Transgender
- 84% Black/African American, 9% White, 5% Latino
- 14% <= 24, 35% 25-44, 51% >=45 years of age
- 32% < FPL, 60% < 2X FPL
- 42% uninsured, 26% Medicaid, 21% Medicare
- 64% Stage 3 (AIDS)

REACH: Rapid Entry and ART in Clinic for HIV

Goals

- 1. Clinician visit and ART access within 72 hours of clinic presentation
- 2. Decrease time to viral suppression

Health System Changes to Facilitate Program Implementation

ACTION	LEVEL
Remove eligibility restrictions for clinic enrollment	EMA Ryan White office
Loosen administrative requirements for clinic enrollment	EMA Ryan White office; hospital system
Remove TB skin test as requirement for clinic enrollment	Clinic administration
Enhance access to New Patient provider visits	Hospital system; clinic administration
Enhance provider education on Rapid Starts	Clinician
Enhance support for accessing ART, regardless of payer	Pharmacy administration
Continue access to ongoing ART-adherence education	Nursing

Figure 1

REACH Cohort Characteristics, N=207					
	Characteristic	Median <i>or</i> n(%)			
	Age	35 (25-45)			
Young Black Men	African American	188 (91%)			
	Male	165 (80%)			
	Uninsured (Ryan White only)	118 (57%)			
Socioeconomic Challenges	Unstable housing	126 (61%)			
	Income	\$8,796			
Dayahasasial Challangas	Active substance use	91 (44%)			
Psychosocial Challenges	Mental health disorders	54 (26%)			
Diamadical Campulavitus	CD4 count	146 cells/μL			
Biomedical Complexity	ART experienced	83 (40%)			

SCALE IS A CHALLENGE

Colasanti J, et al. Open Forum Infect Dis. 2018;5(6):ofy104.

Patients in 6 week REACH pilot: **N=90**

All patients newly enrolled in the clinic from January 1–July 31, 2016: **N=299**

ARVs During Rapid Entry

	Pre-REACH	Post-REACH
	N (%)	N (%)
Initiated ART	111 (95)	85 (94)
Anchor		
TDF	67 (60)	36(47)
TAF	16 (14)	22 (24)
ABC	27 (24)	26 (29)
AZT	1 (1)	
NRTI sparing		1 (1)
Backbone		
DTG	55 (49)	49 (59)
EVG	27 (24)	22 (26)
DRV	27 (24)	12 (14)
EFV	1 (0.8)	1 (1.2)
Lop/r	1 (0.8)	
RPV		1 (1.2)

Results: Process Improvement \downarrow Time to VS

Days to Clinical Events

	Pre-REACH N=117	Post-REACH N=90	
Event	Mean (95% CI) <i>or</i> n(%)	Mean (95% CI)	<i>P</i> value
Days to 1 st scheduled provider visit	14.0 (11.9, 16.2)	3.7 (1.1, 6.2)	<0.0001
Days to 1st attended provider visit	12.1 (6.4, 22.8)	2.1 (0.9, 4.4)	<0.0001
Days to ART start	22.0 (12.7, 38.1)	4.4 (2.3, 8.4)	<0.0001
Attended 1st scheduled visit	85 (73)	73 (81)	NS
Viral suppression	87 (74)	61 (68)	NS

Days to Viral Suppression

Late Presenters Need More

	_. Ear	îy .		La	Late		
	≤ 90 days after diagnosis			> 90 days at			
	Pre-REACH Post-REACH			Pre-REACH	Post-REACH		
	n = 47	n = 29	_	n = 70	n = 61		
Outcomes	Median (IQR) or n (%)		P value	alue Median (IQR) or n (%)		P value	
Days to 1st scheduled provider visit	12 (4, 19)	4 (2, 7)	<.0001	17 (9, 21)	4 (1, 7)	<.0001	
Days to 1st attended provider visit	14 (6, 20)	5 (2, 7)	0.0003	20 (10, 29)	4 (2, 10)	<.0001	
Attended 1st scheduled visit	37 (79)	26 (90)	0.3480	48 (69)	47 (77)	0.2783	
Days to ART initiation	17 (11, 27)	5 (3, 10)	0.0002	24 (13, 41)	7 (3, 22)	<.0001	
Viral Suppression	41 (87)	24 (83)	0.7392	46 (66)	37 (61)	0.5489	

86% 64%

Late Presenters Need More

	_. Ear	1y		Late		
	≤ 90 days af	≤ 90 days after diagnosis		> 90 days at		
	Pre-REACH Post-REACH			Pre-REACH	Post-REACH	
	n = 47 n = 29			n = 70	n = 61	
Outcomes	Median (IQR) or n (%)		P value	Median (IQR) or n (%)		P value
Days to 1st scheduled provider visit	12 (4, 19)	4 (2, 7)	<.0001	17 (9, 21)	4 (1, 7)	<.0001
Days to 1st attended provider visit	14 (6, 20)	5 (2, 7)	0.0003	20 (10, 29)	4 (2, 10)	<.0001
Attended 1st scheduled visit	37 (79)	26 (90)	0.3480	48 (69)	47 (77)	0.2783
Days to ART initiation	17 (11, 27)	5 (3, 10)	0.0002	24 (13, 41)	7 (3, 22)	<.0001
Viral Suppression	41 (87)	24 (83)	0.7392	46 (66)	37 (61)	0.5489

86% 64%

More needed...Especially Re-entry

Cox proportional hazard model: Time to VS

Variable	Adjusted Hazard Ratio	95% Confide	P value	
Post-REACH	1.825	1.276	2.609	0.001
ART Naïve	1.733	1.192	2.518	0.004
INSTI use	1.477	0.925	2.358	0.103
Baseline VL	0.842	0.711	0.997	0.046

Adjusted Logistic Regression: Achieving VS

Variable	Adjusted Odds Ratio	95% Confidence Interval		P value
Post-REACH	0.821	0.418	1.611	0.5661
ART Naïve	2.231	1.131	4.400	0.0205
INSTI use	2.606	1.204	5.641	0.0150
Baseline VL	1.243	0.871	1.773	0.2303
Black/African American	0.484	0.127	1.852	0.2894

Ongoing Rapid Entry at IDP

CrescentCare Start Initiative December 2016

- FQHC (started as ASO) w/ robust support services available
- Medicaid EXPANSION

CrescentCare Start Initiative (CCSI):

Patients newly diagnosed with HIV are seen by a provider within 72 hours (optimally same-day) and provided 30 days of ART.

Early Intervention Services (EIS):

Same protocol but patients contacted our clinic over 72 hours since diagnosis.

Range: 4 days – 25 years

Procedures/Evaluation

Medical Provider Visit:

- HIV Lifecycle, importance of adherence, U=U discussed
- Comorbidities assessed
- Physical Examination
- TAF/FTC/DTG recommended by medical leadership (30 day-supply)
- Provider option to not rx, alter medications if suspected resistance
- First Dose DOT

Post-Provider Visit:

- Enroll in insurance programs
- Intake Labs obtained
- Social Work services for those with urgent needs

- Inclusion:
 - Enrolled 12/2016 2/2018
 - 6 month lab f/u at crescent care
- CCSI 126
 - 4 lost to f/u
- EIS 69
 - 1 died after hospital D/C
 - 1 declined ART on day #1

CrescentCare START: Baseline

	CCSI (n=126)	EIS (n = 69)	
Age, median	29	29	
Female	27 (21.4)	10 (14.5)	
African American	81 (64.3)	48 (69.9)	
Latinx	15 (11.9)	7 (10.1)	
MSM	73 (57.9)	42 (60.9)	
STI at entry	48 (38.1)	32 (46.4)	
<100% FPL	49 (39)	25 (36)	
Uninsured	65 (52)	38 (56)	
Mental health Dx	25 (20)	23 (33)	P < 0.
Baseline CD4	444 (265, 640)	271 (124, 459)	<i>F</i> < 0.

Halperin J et al. OFID. 2019

CD4 Count, Viral Suppression, Transmitted Resistance

CCSI

- All but two patients received TAF/FTC + DTG
- 118/126 genotypes were performed and reviewed.
- 22/118 (19%) with transmitted resistance
- 18 with NNRTI resistance
- 3/22 with M184V/I with two previously on PrEP
- 4/22 with multiple PI mutations including L90M
- All patients with transmitted resistance achieved viral suppression.
- No ART changes due to renal/hepatic toxicity

EIS

- All but three patients received TAF/FTC + DTG
- 63/69 genotypes were performed
- 6/63 (9.5%) with transmitted resistance.
- 5 with NNRTI mutations
- 2/6 with M184V/I no previous PrEP exposure
- All patients with transmitted resistance achieved viral suppression
- No ART changes due to renal/hepatic toxicity

Adapted from: J. Halperin

CCSI Continuum of Care

Barriers to Implementation

Structural/systemic

- HIV testing/diagnosis occurs off-site; ie, referral to clinic
- 2. Complex eligibility criteria eg, CD4 count, income, residence
- 3. Access to medications without payer source
- 4. Scheduling and provider availability

Provider/staff beliefs

- 1. "That's how we've always done it."
- 2. Preparatory lab results must be known; ie, serum creatinine, hepatitis B and C serology, genotype
- 3. Latent TB infection screening must be performed first

- Patients' attitudes and beliefs
- Patients' psychosocial comorbidities
 - 1. Unstable housing
 - 2. Food insecurity
 - 3. Mental illness
 - 4. Substance use

Pre-Rapid Entry Implementation

= Step in enrollment process when patient could be turned away and not given PCP appt until step completed

Post Implementation Patient Enrollment

SF DOH: Community-wide coordination

Rapid ART Delivery

LINCS – linkage, integration, navigation, comprehensive services

Slide: adapted from Buchbinder S. Getting to Zero: https://www.sfdph.org/dph/files/sfchip/GettingToZero-HIV.pdf

How to get Antiretrovirals

- No payer source and no documentation to enroll in Ryan White (RW)
 - Manual patient assistance program
 - Can be time intensive, but not impossible
 - Starter packs: need to find funding source for this
 - Expedited insurance applications (eg, San Francisco)
- Enrolled in RW, but awaiting *AIDS Drug Assistance Program* (ADAP) application completion
 - Stop-gap medications
 - Co-pay cards
- Medicaid expansion (eg, Louisiana)
 - "...a gift from the heavens." Halperin

Status of State Action on the Medicaid Expansion Decision

KFF 2019: state of Medicaid expansion

Clinical Guidance – what to start

DHHS^[1]

- Avoid NNRTI-based regimens
- Recommended regimens^a
 BIC/FTC/TAF
 DTG + tenofovir^c/FTC
 DRV/r or DRV/c^b +
 tenofovir^c/FTC

IAS-USA^[3]

Recommend unboosted INSTI regimens (other than DTG/ABC/3TC) as initial therapy
 BIC/FTC/TAF or DTG + FTC/TAF

Key Facilitators of RAPID Intervention

- Same-day appointments
- Flexible provider scheduling (on call backup)
- ART-regimen preapproval prior to genotyping or lab testing
- Availability of ART starter packs
- Patient navigator
- Accelerated process for health insurance initiation
- Observation of first ART dose in clinic (recommended)
- Guarantee sustained access to ART

Some fearful of rapid entry – it's all about context

Too fast to stay on track? Shorter time to first anti-retroviral regimen is not associated with better retention in care in the French Dat'AIDS cohort CD4 cell count at HIV diagnosis/ µL

L. Cuzin , L. Cotte, C. Delpierre, C. Allavena, M-A. Valantin, D. Rey, P. Delobel, P. Pug on behalf of the Dat'AIDS Study group

Published: September 6, 2019 • https://doi.org/10.1371/journal.pone.0222067

CD4 cell count at HIV diagnosis			200-350 N = 1589	350-500 N = 1593	>500 N = 1588	P
Pug Age at diagnosis (Years, median, I	QR)	41 (33–51)	37 (29–47)	34 (27–44)	34 (27–43)	< 0.0001
End of study (%)	In care	75.2	76.4	75.5	77.8	< 0.0001
	Changed place of care	7.7	9.2	10.7	9.3	
	Lost to follow-up	11.8	12.6	12.9	12.3	
	Dead	5.3	1.8	0.9	0.6	
Sex and way of acquisition (%)	MSM ^a	15.8	23.8	29.1	31.3	< 0.0001
	MSW ^b	37.7	25.6	20.1	16.7	
	Women	29.6	26.4	22.4	21.6	
	Trans gender M>W	19.5	29.3	31.7	19.5	
ART 3 rd drug (%)	bPI ^c	69.7	58.0	51.2	44.2	< 0.0001
	NNRTI ^d	8.5	22.0	25.7	30.7	
	INSTI ^e	13.7	14.5	17.2	20.1	
From diagnosis to first visit (days,	median IQR)	9 (3-19)	12 (6-22)	12 (5-22)	13 (6–27)	< 0.0001
Time from first visit to ART (days	Time from first visit to ART (days, median, IQR)		21 (7-56)	42 (14–144)	80 (18-364)	< 0.0001
From diagnosis to undetectable V	L (days, median IQR)	228 (150–300)	212 (132–336)	239 (140–419)	289 (142–634)	< 0.0001

Time from first medical visit to first ART (days)		< 9 N = 1881	9-27 N = 1784	28-90 N = 1800	> 90 $N = 1780$	P
Alive and in care at month 12 after ART prescription (%)		79.9	84.5	85.9	85.2	< 0.0001
Time from diagnosis to undetectable VL (days; median, IQR)		194 (108–351)	210 (130–361)	232 (152–357)	527 (311–924)	<0.0001
Length of first ART (months; r	nedian, IQR)	14 (5–32)	17 (7–35)	21.5 (7-39)	22 (7-42)	< 0.0001
End of study situation Dead (%)		2.2	3.1	1.9	0.9	0.002
	LTFU (%)	14.3	12.4	13.4	12.5	0.002
VL < 50 copies/mL after 6 months of ART (%)		72.1	69.8	78.9	79.6	< 0.0001
VL < 50 copies/mL after 12 months of ART (%)		78.0	81.5	84.1	81.4	0.12
VL < 50 copies/mL after 18 m	onths of ART (%)	83.7	85.5	86.9	87.9	0.15

HPTN 071: PopART -= Universal Test and Treat

3 arm cluster-randomised trial with 21 communities

PopART intervention package

- > Annual rounds of Home Based Voluntary HIV Testing by Community HIV-care Providers (CHiPs)
- > Health promotion, Active Referral and/or Retention in Care support by CHiPs for the following:
 - Voluntary Medical Male Circumcision (VMMC) for HIV negative men
 - Prevention of Mother to Child Transmission (PMCT) for HIV positive women
 - HIV treatment and care for all HIV positive individuals
 - Promotion of sexual health and TB services
 - Condom provision
- > ART irrespective of CD4-count or immune-status provided at the local health centre in Arm A

Time from diagnosis to ART: 10 mo → 6 mo (7 communities)

Group c

HPTN 071: PopART -= Universal Test and Treat

Time from diagnosis to ART: 10 mo → 6 mo (7 communities)

• Group c

HPTN 071: PopART -= Universal Test and Treat

Rapid Start Supports Equity

 AA men are more likely to have delays in ART initiation even after seeing a prescribing provider.

- No better demonstration of commitment to a community than same-day immediate access to a provider.
- Dazon from Sister Love: "See my brothers and sisters as your own. If you do then, of course, you will see patients same-day, start same-day and love same-day."

Rapid Entry is Part of a Package

Guide for Clinicians

Training

Consultation

Home » ShareSpot » Immediate ART Initiation: Guide for Clinicians

Immediate ART Initiation: Guide for Clinicians

February 14, 2019

Susa Coffey, MD, AETC National Coordinating Resource Center, UCSF Center for HIV Information
Oliver Bacon, MD, MPH

https://aidsetc.org/blog/immediate-art

Domestic Rapid Start Consortium

- Boston
- New York
- Philadelphia
- Atlanta
- Miami
- New Orleans
- Baton Rouge
- Orlando

San Antonio

Tucson

Albuquerque

Los Angeles

Chicago

- Austin
- Houston
- Alexandria
- Birmingham
- Washington D.C.
- San Francisco
- Phoenix

Best Practices

Logistical Hurdles

The Third **U** = **U**NIVERSAL

Research

Contact: Jeremiah Rastegar jrastegar@uabmc.edu

Acknowledgements

- Jason Halperin
- Jeri Sumitani
- Carlos del Rio
- Wendy Armstrong
- IDP Patients, Clinicians and Staff
- Fulton County Task Force on HIV/AIDS
- Adia Rana
- Thanes Vanig

